
IJSRSET141120 | Received: 15 Dec 2014 | Accepted: 20 Dec 2014 | January-February 2015 [(1)1: 57-61]

Themed Section: Engineering and Technology

57

Key Exchange Based on Genetic Algorithm
Amanie Hasn Alhussain

Information Technology Department, Peoples’ Friendship University, Moscow, Russia

ABSTRACT

In this study, has shown how to design key exchange algorithm based on the features of crossover and

mutation operations of genetic algorithm (GA) and asymmetric key encryption. The number of the

crossover points together with number of mutation points dictate the length of the secret key and hence the

strength of the algorithm. The algorithm is further strengthened by making it difficult to break by

permuting the key by a random permutation factor; the randomness together with permutation makes the

algorithm robust and hard to break. The proposed algorithm solves the problem of storing and distribution

of the secret key over the network; the various examples and implementation of the algorithm proves that

it exchanges the keys over the channel successfully

Keywords: key exchange algorithm, Genetic Algorithm, Mutation, Crossover, public key, Asymmetric

Key Encryption.

I. INTRODUCTION

The growing dependence on computers to process

information and transmit it across virtually

connected systems has increased the need for

security. Cryptography is a fundamental technique

for securing information. Any cryptographic system

based on the use of cryptographic keys. In the

symmetric cryptosystem sender and recipient of the

message using the same secret key. It should be

known to all other simultaneously and periodically

updated by the sender and the recipient. The

process of distribution (distribution) of secret keys

between participants of information exchange in

symmetric cryptosystems is very complex.

 Asymmetric cryptosystem involves the use of two

keys - public and private (secret). The public key

can disclose, and private must be kept secret. In an

exchange of messages must forward only the public

key. An important requirement is to ensure the

authenticity of the public key forwarded.

Key distribution is the most important process in

the management of keys. It must meet the

requirements of the efficiency and accuracy of

distribution, and the confidentiality and integrity of

the distributed keys [1].

For the distribution of keys between users of

computer network, there are the following basic

ways: 1. the use of one or more Key Distribution

Center- 2. The direct exchange of session keys

between the users of the network.

In both cases, should be provided with the

authenticity of the communication session. This can

be achieved by using a challenge-response

mechanism or timestamps.

In literature to date, many key exchange algorithms

has been proposed. Diffie-Hellman was the first

public-key algorithm ever invented, way back in

1976. It gets its security from the difficulty of

calculating discrete logarithms in a finite field, as

compared with the ease of calculating

exponentiation in the same field. Diffie-Hellman

© 2015 IJSRSET | Volume 1 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

58

can be used for key distribution but it cannot be

used to encrypt and decrypt messages. Diffie-

Hellman also works in commutative rings. Z.

Shmuley and Kevin McCurley studied a variant of

the algorithm where the modulus is a composite

number. V. S. Miller and Neal Koblitz extended

this algorithm to elliptic curves. Taher ElGamal

used the basic idea to develop an encryption and

digital signature algorithm [2].

Up to Genetic algorithm, it is a search heuristics

that mimics the process of natural evolution.

Genetic algorithms are based on the Darwinian

theory of evolution. Genetic algorithms have been

invented by J. Holland in 1960s [4], and since then

they have been successfully applied to the variety

of problems in the field of combinatorial

optimization [3]

This paper is proposed an algorithm for key

distribution and management and key exchange

based on genetic algorithm and asymmetric key

encryption.

The rest of the paper is organized as follows:

In Section II, the proposed algorithm was

introduced; Section III discusses about

implementation example of the algorithm; Section

IV experimental results; Section V concludes the

paper.

II. METHODS AND MATERIAL

THE PROPOSED ALGORITHM:

Description of the Key Exchange Algorithm:

The steps of the algorithms consist of two steps:

The First Step:

It is on the sender side:

1. Choose Block size N, numbers of crossover points R,

numbers of mutation points M

2. Create two random numbers, the first called random

factor which range from 1 to 15, while the second

called permutation factor which range from 1 to 7.

3. Send these values to the other side.

The second Step:

It is on the second side (receiver):

Input: Block size N, numbers of crossover points R, numbers

of mutation points M, random factor, permutation factor

1. Complete the length of the key with spaces to

equal the maximum key length=16 (supposed in

our algorithms could be different depend on the

purpose, constrains and conditions which

algorithms is served).

2. Convert each character of the key into its ASCII

cod value.

3. Convert each ASCII cod value into binary (8bit)

representation.

4. Divide the string of the bits which is obtained in

step 3 into block with size blockSize N to form

one row matrix.

5. Transform one raw matrix which is generated in

step 4 into matrix with N columns.

6. Transform multicolumn matrix which is

obtained from step5 into transport matrix.

7. Merge the rows in the previous matrix into one

strings, divide it into two substrings (which

formed parents in our algorithm).

8. Generate R random crossover points which

range from 1 to length(parent)-1,and sort them.

9. Crossover the parent strings which is generated

in step7 according to the R crossover points

which is created in step8 to generate new strings

of bits which formed the children (multiple-

point crossover).

10. Generate M random mutation points which

range from 1 to length(child)-1.

11. Mutate each string (child) which is created in

step9 with M mutation points which is created

in step10 respectively.

12. Divide each child into substrings with 8bits

length.

13. Create random cross point range from 0 t0

7which would be used to cross each 8bits string.

14. Divide each 8bits string into two parts

according to cross point, and convert each part

into hexadecimal value to form encrypted key

which is the sequence of hexadecimal values.

15. Formulate private key which consists of the

sequence of block Size, crossover

point1…crossover pointR, mutation point1…

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

59

mutation pointM , cross point, permutation

factor and random factor.

16. Repeat random factor L times to form

randomFactorString : L =the length of the

sequence obtained in the previous step.

17. Formulate practical public key = (private key)

XOR randomFactorString.

18. Create permutated practical public key by

permutated practical public key according to

permutation factor

19. Create Public key which is the sequence of

permutated practical public key followed by

permutation factor and random factor.

20. Message to send is encrypted key which is

created in step15, followed by public key which

is generated in step20.

The public key would be sent directly from the

sender to the receiver by inserting it at the end of

the encrypted key to form the message which would

be sent to the receiver (Fig.1), so the receiver would

retrieve the private key from the public key by

reverse the steps of obtaining the public key and

based on the symmetry of the operations involved

and the symmetry of XOR operations [5].

 Figure 1. The schema for exchange the key

EXAMPLE OF APPLYING THE PROPOSED ALGORITHM:

On the sender side:

If the sender chooses the following parameters:

Block size N=4, numbers of crossover points R=2,

numbers of mutation points M=4,

Random factor=14, permutation factor=2

On the receiver side:

Input: Block size N, numbers of crossover points R,

numbers of mutation points M, random factor,

permutation factor

Suppose input key: Agt8374HmC9

1. Complete the length of the key with spaces to

equal the key length=16

2. Convert each character into its ASCII cod.

3. Convert each ASCII cod into binary (8bit).

4. Divide the string of the bits into block with

size blockSize N=4.

5. Transform one raw into matrix with N

columns.

6. Transform multicolumn matrix into transport

matrix.

7. Merge the rows into one strings, divide it into

two substrings.

8. Generate two random crossover points, and

sort them.

9. Crossover the parent strings according to the

two crossover points

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

60

10. Generate four random mutation points.

Mutation point1:13; Mutation point2:32;

Mutation point3:17; Mutation point4:16;

11. Mutate each string (child) with two mutation

points respectively.

12. Divide each child into substrings with 8bits

length.

13. Create random cross point.

14. Divide each 8bits string into two parts

according to cross point, and convert each part

into hexadecimal value.

15. Create two random numbers: random factor

and permutation factor .Random Factor: 14;

permutation Factor: 2;

16. Formulate private key.

17. Repeat random factor 8 times to form

randomFactorString

randomFactorString: 14 14 14 14 14 14 14

14

18. Formulate practical public key = (the first

eight parts of private key) XOR

randomFactorString.10 3D 2C 7 26 3 2 16

19. Create permutated practical public key 2C 7

26 3 2 16 10 3D

20. Create Public key

21. Message to send

Graphic user interface of this example is presented

in the experimental results.

III. RESULTS AND DISCUSSION

The first step is included sending the parameters

from Bob to Anna

If the values of the parameters are chosen as: Block

size N=4, numbers of crossover points R=2,

numbers of mutation points M=4, Random

factor=14, permutation factor=2

The second step: In Anna side, when the key is

entered, it would be encrypted after that the private

and public key would be produced; the message to

be sent is the encrypted key followed by produced

public key.as shown in fig 2; the basic internal

parameters that would be used is shown in fig 3;

while the description of the encrypted key process

is shown in fig 4.

Figure.2 public and private key and the message to be sent to the sender
side (receiver side)

Figure.3 parameters which are generated internally (receiver side)

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

61

Figure. 4 the internal steps of the proposed system on the receiver side

On the Bob side, Bob would receive the encrypted key as

shown in fig. 5; the steps to retrieve the original key are

shown in fig. 6.

Figure.5: Received encrypted key(on the sender side)

Figure 6: steps of retrieving original key

IV. CONCLUSION

In the present study a key exchange algorithm has

been designed using the concept of genetic

algorithms with the randomness and by the help of

public key encryption. The algorithm solves the

problem of key distribution and storing by using the

genetic algorithm operators. The algorithm has been

implemented using C#, and MATLAB is used as

simulation platform. It has been tested and work

successfully via network. This algorithm enhances

the quality, efficiency and effectiveness of the

algorithm being used for the cryptography and key

exchange.

V. REFERENCES

[1] Handbook of Applied Cryptography, by A. Menezes, P. van

Oorschot, and S. Vanstone, CRC Press, 1996.

[2] Applied Cryptography, Second Edition: Protocols, Algorthms,

and Source Code in C by Bruce Schneier Wiley Computer

Publishing, John Wiley & Sons, Inc.

[3] Poonam Garg, “Genetic Algorithm, Tabu Search & Simulated

Annealing Attack on Transposition Cipher”, proceeding of third

AIMS International conference on management at IIMA – 2006,

983-989

[4] Holland, J., “Adaptation in Natural and Artificial Systems”,

University of Michigan Press, Ann Arbor, 1975.

[5] Alhussain Amanie Hasn “Cryptosystem for Providing Secured

Application based on Genetic Algorithm” International Journal

of Emerging Technology and Advanced Engineering Certified

Journal, Volume 4, Special Issue 5, June 2014, 8-14;

International Research Conference on Engineering, Science and

Management 2014 (IRCESM 2014)

